skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fu, Lee-Lueng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Two moorings deployed for 75 days in 2019 and long‐term satellite altimetry data reveal a spatially complex and temporally variable internal tidal field at the Surface Water and Ocean Topography (SWOT) Cal/Val site off central California due to the interference of multiple seasonally‐variable sources. These two data sets offer complementary insights into the variability of internal tides in various time scales. The in situ measurements capture variations occurring from days to months, revealing ∼45% coherent tides. The north mooring displays stronger mode‐1 M2with an amplitude of ∼5.1 mm and exhibits distinct time‐varying energy and modal partitioning compared to the south mooring, which is only 30‐km away. The 27‐year altimetry data unveils the mean and seasonal variations of internal tides. The results indicate that the complex internal tidal field is attributed to multiple sources and seasonality. Mode‐1 tides primarily originate from the Mendocino Ridge and the 36.5–37.5°N California continental slope, while mode‐2 tides are generated by local seamounts and Monterey Bay. Seasonality is evident for mode‐1 waves from three directions. The highest variability of energy flux is found in the westward waves (±22%), while the lowest is in the southward waves (±13%). The large variability observed from the moorings cannot be solely explained by seasonality; additional factors like mesoscale eddies also play a role. This study emphasizes the importance of incorporating the seasonality and spatial variability of internal tides for the SWOT internal tidal correction, particularly in regions characterized by multiple tidal sources. 
    more » « less
  2. The M2internal tide field contains waves of various baroclinic modes and various horizontal propagation directions. This paper presents a technique for decomposing the sea surface height (SSH) field of the multimodal multidirectional internal tide. The technique consists of two steps: first, different baroclinic modes are decomposed by two-dimensional (2D) spatial filtering, utilizing their different horizontal wavelengths; second, multidirectional waves in each mode are decomposed by 2D plane wave analysis. The decomposition technique is demonstrated using the M2internal tide field simulated by the MITgcm. This paper focuses on a region lying off the U.S. West Coast ranging 20°–50°N, 220°–245°E. The lowest three baroclinic modes are separately resolved from the internal tide field; each mode is further decomposed into five waves of arbitrary propagation directions in the horizontal. The decomposed fields yield unprecedented details on the internal tide’s generation and propagation, which cannot be observed in the harmonically fitted field. The results reveal that the mode-1 M2internal tide in the study region is dominantly from the Hawaiian Ridge to the west but also generated locally at the Mendocino Ridge and continental slope. The mode-2 and mode-3 M2internal tides are generated at isolated seamounts, as well as at the Mendocino Ridge and continental slope. The Mendocino Ridge radiates both southbound and northbound M2internal tides for all three modes. Their propagation distances decrease with increasing mode number: mode-1 waves can travel over 2000 km, while mode-3 waves can only be tracked for 300 km. The decomposition technique may be extended to other tidal constituents and to the global ocean. 
    more » « less